

Overview of the NASA Fourth <u>Convection And Moisture</u> <u>Experiment</u>

Ramesh Kakar, Program Scientist
Earth Science Enterprise
NASA Headquarters

Robbie Hood, Lead Mission Scientist NASA / Marshall Space Flight Center

Main Research Issues Supporting the NASA Earth Science Enterprise

- Is the global water cycle through the atmosphere accelerating?
- How are variations in local weather, precipitation and water resources related to global climate change?
- How well can weather forecasting be improved by new global observations and advances in satellite data assimilation?

Specific Tropical Cyclone Research Topics

- Observation and modeling of processes related to rapid intensification of tropical cyclones
- Observation and modeling of storm movement
- Improving remote sensing techniques to observe wind, temperature, and moisture in tropical cyclones and their environment
- Enhanced understanding of tropical convective system structure and dynamics
- Improved understanding of scale interactions between intense convection and mesoscale systems

The Fourth Convection And Moisture EXperiment

Science Team

- 29 Principal Investigators from 5 NASA Centers, 10 universities, and 2 other governmental agencies
- Collaborative partners with NOAA, United States
 Weather Research Program, and Air Force Reserve
 53rd Weather Reconnaissance Squadron

- Conducted during 16 August 24 September, 2001
- Measurement platforms include high and medium aircraft, Unpiloted Aerial Vehicle, weather balloons, ground-based radars, and EOS satellites
- NASA field command center located at Jacksonville Naval Air Station, Florida

Mobile Profiler in Key West

Weather Balloon at Andros Island, Bahamas

NASA ER-2

NASA DC-8

AEROSONDE

The CAMEX-4 Team and its Partners

Coordinated Observations of Vortex Evolution and Structure (COVES)

- Extensive multi-aircraft sampling of mature hurricane over a two day period
- Study of processes related to rapid intensification (or weakening)
- Requires high density network of dropsondes and AXBTs

Optimal Data Assimilation (ODA)

- Assessment of the impact of high resolution water vapor and wind measurements on forecasts of hurricane intensity and track
- Collection of high resolution water vapor measurements to characterize water vapor inflow regions
- Evaluation of upper troposphere humidity field and investigate troposphere-stratosphere exchange

Eyewall and Rainband Convection (ERC)

- Study of eyewall rain and rainband vertical structure, horizontal extent, evolution, and quantification
- Investigation of warm core dynamics, hot tower environment, and the relationship of convective bursts to intensity change

Landfalling Structure Changes (LSC)

- Study of vortex breakdown and resulting changes in wind and rainfall distributions
- Evaluation of quantitative precipitation estimation techniques

Extra-tropical Transition (EXT)

- Study of interactions between a tropical cyclone and the mid-latitude baroclinic environment
- Multi-agency, multi-aircraft mission if suitable storm exists within CAMEX region of interest

- Andros Island Calibration (AIC)
 - Short cross-calibration mission of radiosonde, Aerosonde, and aircraft remote sensors and dropsonde measurement capabilities
- Key Area Microphysics Project (KAMP)
 - Multi-aircraft, multi-radar study of tropical cloud storm dynamics and microphysics
 - Evaluation of quantitative precipitation estimation techniques

CAMEX-3 Tracks

- Long life cycles
- Relatively short aircraft transit times
- Several landfalls during experiment

CAMEX-4 Tracks

- Few hurricanes; Short life cycles
- Intensity difficult to forecast
- Long aircraft transit times
- Only one landfall during experiment

TRMM SST

August, 1998

August, 2001
(During TRMM boost)

TRMM SST

September, 1998

September, 2001
(After TRMM boost)

Tropical Storm Chantal

- 20 Aug. ERC Mission
- Poorly organized; no eyewall
- Large wind shears observed by dropsondes

Hurricane Erin

- •10 Sept ODA mission
- Historical release of dropsonde from stratosphere into hurricane eye

Hurricane Erin

ER-2 Doppler Radar (EDOP)

Advanced Microwave Precipitation Radiometer (AMPR)

Tropical Storm Gabrielle

- Difficult to forecast intensity
- •Early landfall on 14 Sept. (Ground-based LSC)
- Refused to intensify on 15 Sept. (EXT/ODA)
- •Intensified unexpectedly on 16 Sept. (ODA/ERC)

15 Sept. DC-8 flight

16 Sept. ER-2 flight

Tropical Storm Gabrielle

14 September

15 September

16 September

Hurricane Humberto

22 Sept Gaining strength

23 Sept
Maximum intensity

24 Sept Weakening

- Noticeable warm core
- Vigorous convection on north side
- Displaced upper and lower level centers

Hurricane Humberto Flight Tracks

22 Sept. (ERC)

ER-2

23 Sept. (COVES)

24 Sept. (COVES)

DC-8

22 September

23 September

24 September

Hurricane Humberto

ER-2 Doppler Radar (EDOP)

Advanced Microwave Precipitation Radiometer (AMPR)

Success Criteria

Success guarantees:

- Science plan incorporating a combination of hurricane and KAMP rainfall missions to offset risk of non-conducive weather conditions
- Designing multiple hurricane missions to accommodate several types of storms
- Missions are not dependent on any one instrument or aircraft
- Conducting field phase during the peak period of the hurricane season
- Will return to DFRC to sample tropical cyclones along the western coast of Mexico if no Atlantic tropical cyclones are expected to form before the end of the experiment

Predicted milestones for success:

- Good / 2 hurricane flights and 2 KAMP flights
- Great / 2 COVES, 2 ODA, 2 ERC, 1 LFS, and 3 KAMP
- Final Outcome Great Success
 - 2 COVES, 1.5 ODA, 2.5 ERC, 1 LFS w/o aircraft, 0.5 EXT and 4 KAMP

Key Accomplishments

- Unprecedented joint NASA/NOAA aircraft sampling of tropical rain systems
- First stratospheric release of dropsondes into eye of hurricane
- Successful sampling of landfalling T.S. Gabrielle with ground-based instrumentation
- Near real-time broadcast of NASA dropsonde and radiosonde information to NOAA Data Pipeline for input into operational weather forecast models
- First long-endurance environmental sampling of western Atlantic Ocean by Aerosonde, an Unpiloted Aerial Vehicle
- Close range observation of Jacksonville funnel cloud

Key Accomplishments

- Missions conducted into Tropical Storms
 Chantal and Gabrielle as well as Hurricanes Erin and Humberto
- Unprecedented sampling of tropical cyclones with joint NASA and NOAA aircraft missions
- First stratospheric release of dropsonde into eye of hurricane measuring temperature, humidity, and air pressure down to the ocean surface
- Successful sampling of landfalling Tropical Storm Gabrielle with mobile ground-based instrumentation
- First long-endurance sampling of western Atlantic Ocean by Unpiloted Aerial Vehicle
- Sampled rain structures in Key West area
- Conducted daily upper air soundings at Andros Island, Bahamas
- Contributed to development to climatic data base needed to study long-term hurricane trends

20 Aug. ER-2 Flight Track over Tropical Storm Chantal

10 Sept. DC-8 Flight Track over Hurricane Erin

19 Aug. QuikSCAT Observations of Tropical Storm Chantal

10 Sept. QuikSCAT
Observations of Hurricane Erin

